Further investigation of the R-sequence – new G-sequence out there!

I calculated more values of the R-sequence.

3
9, 10
27, 28, 30
81, 84, 88, 90, 100, 104
243, 252, 264, 270, 272, 280, 300, 304, 312
729, 736, 756, 784, 792, 810, 816, 840, 880, 900, 912, 928, 936, 992, 1000, 1040

next:
2187, 2208, 2268, 2352,2368, 2376,
2430, 2448, 2464, 2520, 2624, 2640,
2700, 2720, 2736, 2752, 2784, 2800,
2808, 2912, 2976, 3000, 3008, 3040, 3120

next:
6561, 6624, 6784, 6804, 7056, 7104, 7128, 7290, 7344, 7360, 7392, \
7552, 7560, 7616, 7744, 7808, 7840, 7872, 7920, 8100, 8160, 8208, \
8256, 8352, 8400, 8424, 8512, 8576, 8736, 8800, 8928, 9000, 9024, \
9088, 9120, 9152, 9280, 9344, 9360

next:
19683, 19840, 19872, 20000, 20224, 20352, 20412, 20608, 20800, 21168, \
21248, 21312, 21384, 21632, 21870, 21952, 22032, 22080, 22176, 22656, \
22680, 22784, 22848, 23232, 23424, 23520, 23616, 23680, 23760, 23936, \
24300, 24480, 24624, 24640, 24768, 24832, 25056, 25200, 25272, 25536, \
25728, 25856, 25984, 26208, 26240, 26368, 26400, 26752, 26784, 27000, \
27072, 27200, 27264, 27360, 27392, 27456, 27520, 27776, 27840, 27904, \
28000, 28032, 28080, 28288, 28928, 29120

Based on this investigation we cannot find a counterexample to the claim that each i-blocker contains only one (and the same time the smallest) odd number, which is of the form 3^k. 3 plays here a significant role.

Lengths of blockers:  1,1,2,3,6,9,16,21,39,66

The amount of corresponding primes
1,
1+2=3,
1+2+3=6,..
ie. 1,3,6,12,21,38,63,.. defines corresponding primes in the xi (matrix with k-th column containing ordered (ascending) k-almost primes). We  also observe that A215005, i.e. a(n) = a(n-2) + a(n-1) + floor(n/2) + 1, contains 6, 12, 21, 37, 62 (62 but not 63!), but this resemblance has not been verified.

R sequence:

rseq

Positions of 3^k are: 1,2,4,7,13,22,38,.. We observe that this starts exactly as A101268, i.e. number of compositions of n into pairwise rel. prime parts.

Advertisements

About misha

Imagine a story that one can't believe. Hi. Life changes here. Small things only.
This entry was posted in Mathematics. Bookmark the permalink.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s